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ABSTRACT
The Atlanta Fire Rescue Department (AFRD) attempts to
reduce fire risk by inspecting buildings for potential hazards
and fire code violations. This paper provides a case study
exemplifying how data science can be used to help cities
identify and prioritize potential property inspections, using
machine learning, geocoding, and information visualization.
As a result of this work, we generated a risk score for 5,000
buildings in the city, with an average of 73% accuracy for
predicting future fires. We also identified 19,397 new po-
tential properties to inspect, based on AFRD criteria, and
developed an interactive map to allow AFRD staff to make
informed decisions about fire inspections. The results of this
study hold great promise for helping cities use data–driven
techniques to make civic processes more efficient.

Categories and Subject Descriptors
D.4.8 [Performance]: Modeling and prediction

Keywords
Data science, government innovation, fire risk, predictive
modeling

1. INTRODUCTION
The City of Atlanta Fire Rescue Department (AFRD), like
many other fire departments, conducts regular property in-
spections to ensure that commercial properties comply with
the city’s Code of Ordinances for fire prevention and safety.
The current process for AFRD’s property inspections in-
volves a legacy system of paper file records and inspections
conducted on the basis of pre–existing permits, without a
robust process for identification, selection, and prioritiza-
tion of new properties to inspect. With an annual average
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of nearly 650 fires and 2,573 annual property inspections,
the AFRD Assessment and Planning Unit wanted to ensure
that the properties being inspected were those at greatest
risk of fire. Knowing that the 2,573 current property inspec-
tions were not all of the commercial properties in the city of
Atlanta, they also wanted to obtain a more complete list of
commercial properties that potentially needed inspection.

AFRD, through this effort, is attempting to address the
problem of how to conduct fire inspections in a more data-
driven way, to more efficiently utilize their limited number of
inspection personnel. This is one example of a civic problem
which can be addressed through a careful application of data
science techniques. Through a partnership between AFRD
and the Georgia Institute of Technology with the Data Sci-
ence for Social Good program, we discovered 19,397 poten-
tial new properties to inspect, and have provided AFRD
with a method to prioritize those inspections using a fire
risk score for buildings generated by predictive modeling ma-
chine learning classification techniques. By gathering data
from a variety of government and commercial sources, we
obtained a robust set of building information variables, in
order to build a predictive model of fire risk based on the
features of buildings1 that had previously caught on fire.
We then assigned the fire risk score generated by our model
to the lists of current and potential properties to inspect,
and created an interactive map of the city to provide a tool
to visualize those results. We hope that our work will aug-
ment the Atlanta Fire Rescue Department’s decision-making
process to improve fire risk reduction, and help support a
data-driven allocation of inspection personnel and other es-
sential resources. Additionally, we hope our work can prove

1We will be referring to buildings and properties as two dis-
tinct ideas throughout this paper. The AFRD conducts
property inspections and issues permits to the owners of
those properties. However, it is the physical structure of
buildings that catch on fire, and thus, when we build the pre-
dictive model, we do so with information about the buildings
themselves, which may or may not contain properties.
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useful as a model for the identification and prioritization of
property inspections in other cities around the country, and,
perhaps, the world.

2. RELATED WORK
The clearest precedent for our research with AFRD is the re-
cent work from the Fire Department of New York (FDNY) to
build a “Risk-Based Inspection System” (RBIS). After con-
ducting focus groups with firefighters and using data about
building fires in New York City, the NYC Mayor’s Office of
Data Analytics built a “data-driven model to identify build-
ings at greatest risk for fires, to better prioritize FDNY’s
inspection process [1]. One key challenge faced by both the
FDNY RBIS initiative, as well as our work with AFRD,
was the difficulty of joining disparate sets of data about city
buildings, gathered from various city departments with dif-
ferent building ID numbers, location formats, and varying
levels of data completeness. One way to resolve this issue,
as FDNY found, is to rely “less on technological expertise
and more on strong political leadership from... senior fig-
ures in city and local government” [1]. As of the time of
writing, the City of Atlanta’s Office of Buildings, Office of
Housing, and the Fire Rescue Department did not share a
unified database of buildings, and thus, the process of join-
ing building data sets became a more technologically difficult
task than it might otherwise have been.

Other similar research has used predictive modeling in the
context of forest fires in Europe, to better support the alloca-
tion of firefighting, fire prevention, and foliage recuperation
resources to the areas of highest fire risk [2]. For instance, de
Vasconcelos’ work with spatial prediction of fires using logis-
tic regression and neural networks is similar to the process
we used in creating our predictive risk model [3]. However,
their work, as well as others, has primarily dealt with fire
risk at a regional level, using geographic and topographic
features of Greek, Portuguese, and Spanish regions as vari-
ables in the model [3, 4, 5], instead of a more fine-grained
unit of analysis of buildings in a city, as we employ here.

3. METHODOLOGY
In this paper, we will highlight and describe our general
process for identification and prioritization of property in-
spections, emphasizing challenges and important steps in
the process. Before we could discover new potential prop-
erties to inspect, or prioritize those inspections with a fire
risk score, we first needed to join data from a variety of
sources. This was done to construct as complete a picture
as possible of the properties in Atlanta needing inspection,
based on information about where fires had previously oc-
curred in the city. After the data joining, we were able to
identify 19,397 new potential properties to inspect, through
a process of property discovery using AFRD and City of At-
lanta fire code criteria, and geocoding techniques. Then, we
built a predictive model of fire risk, using building informa-
tion about fire incidents from 2011-2014, and evaluated the
results of that model in several ways. Finally, the fire risk
scores generated by that model were applied to 5,022 of the
current and potential property inspections, and those results
were visualized on an interactive map that AFRD staff will
use to augment their inspection processes. See Table 1 for
a summary of the different lists of property inspections and
buildings we will be referring to throughout this paper.

3.1 Data Joining
The data used in this study came from a variety of sources,
as tabulated in Table 2.

The historical fire incidents and inspection permit records
were provided by AFRD. The majority of the commercial
property data, which includes a variety of building features,
such as year built, building material, number of floors and
units, building condition and other information, were pur-
chased from the CoStar Group, a commercial real estate
agency, by AFRD. Other data, such as the Atlanta Fulton
county and Dekalb county parcel information, data on parcel
conditions, and business license information, were obtained
from the City of Atlanta’s Office of Buildings, and the Office
of Housing’s Strategic Community Investment (SCI) report.
We also obtained socioeconomic and demographic data from
the U.S. Census Bureau. All of these data sources contribute
to developing our predictive model for commercial fire risk
estimation.

A critical step of this study was to join different datasets
together so that data from different sources about the same
building or property could be unified to create the most com-
plete picture of a given property. For instance, by joining
fire incident and commercial property data together, we can
obtain a general idea regarding which types of commercial
buildings caught fire at the highest rates. Or, for example,
by joining commercial property data with parcel data from
the SCI report, we can generate a more comprehensive view
regarding specific characteristics of buildings, including the
structure and parcel condition, as well as vacancy informa-
tion.

We joined the datasets together based primarily on the spa-
tial location information. There are three types of spatial
or location information in our datasets, including longitude
and latitude, address information, and the parcel identifi-
cation number, which is a unique ID number created by
Fulton and Dekalb county for tax purposes. We performed
a location join based on the above three types of location
information. The final joins, and the variety of spatial in-
formation types, are illustrated in Figure 1. One obstacle
we encountered was that spatial information had different
formatting standards across the datasets. For example, the
addresses from the CoStar Group were all in lowercase, with
road names abbreviated instead of fully spelled out, while
data from the multiple departments of the City of Atlanta
tended to use a more consistent address format. Therefore,
a spatial information cleaning process was conducted before
joining the datasets directly. We used three tools, including
ESRI ArcGIS, Google Geocoding API, and the US Postal
Service’s address validation API to clean up the location in-
formation and validate the coordinates, so the data could be
in a more uniform format before being joined together.

3.2 Discovering New Properties to Inspect
To discover new potential properties to inspect, we first had
to understand what types of properties currently required
fire inspections, in order to find others of similar property
types. Using a list of occupancy usage types from the cur-
rent fire inspection permit database, we found more than 100
unique occupancy usage types that were currently being in-
spected. Then, by joining the currently inspected properties



Table 1: Summary of Inspection and Building Lists

Name Count

Current Annual Inspections 2,573

Potential New Inspections (long list2) 19,397
Potential New Inspections (short list) 6,096
Current And Potential Inspections (short list) 8,669
Current and Potential Inspections (short list) with Risk Score 5,022
Commercial Buildings used to build Predictive Model 8,224

Table 2: Data Sources Summary

Source Name Description

Atlanta Fire Rescue Department
Fire Incidents Fire incidents from 2011 - 2015
Fire Permits All permits filed by AFRD

City of Atlanta
Parcel Basic information for each parcel in Atlanta
Strategic Community Investigation Information regarding parcel conditions
Business Licenses All the business licenses issued in Atlanta

Atlanta Police Department
Crime 2014 crime in Atlanta
Liquor Licenses All filed liquor licenses by Police Department

Atlanta Regional Commission Neighborhood Planning Unit Boundary data for each Atlanta neighborhood

U.S. Census Bureau
Demographic Household number, population by race and age
Socioeconomic Household median income

CoStar Group, Inc Costar Properties Commercial property information
Google Place APIs Google Place Information regarding places from Google Maps

Figure 1: Data Joining. Six data sets were joined using three
different spatial information types.

with the Atlanta Business License data, we discovered that,
in addition to the 2,573 currently inspected properties, there
were approximately 19,397 properties of the same property
types in the city. For instance, the Fire Code of Ordinances
stipulates that motor vehicle repair facilities needed inspec-
tion, yet only 186 of a total of 507 of those facilities in the
city are currently inspected annually, suggesting many or all
of the rest of those 507 should be inspected. Then, based on
the most frequently inspected property types, we created a
shorter list of 6,096 new potential property inspections (in-
stead of 19,397), gathered from a variety of data sources, in-
cluding the Atlanta Department of Finance Business License
database, the liquor license database from the Atlanta Po-
lice Department, and other sources from the Georgia State
Government, as well as the Google Places API.

Since many properties exist in multiple datasets, we had

to ensure that the properties on our new potential list were
unique and were not currently inspected, after the aforemen-
tioned datasets were joined together. Different approaches
were used to ensure the uniqueness and newness of potential
property inspections. The most reliable and efficient method
was found to be joining them pairwise using geocoding and
approximate (“fuzzy”) text matching for the business names
and addresses.

3.3 Building a Predictive Model
However, 19,397 new properties is far more than AFRD is
able to inspect on a yearly basis, and, moreover, not all
of those properties need to be inspected with the same fre-
quency. We therefore created a predictive model to generate
a fire risk score based on the characteristics of buildings that
had previous fire incidents in Atlanta. This model was built
using the R statistical programming language and used the
SVM (Support Vector Machine) machine learning algorithm.
The model uses 58 independent variables to predict fire as
an outcome variable.

3.3.1 Data Cleaning
After joining various datasets together to obtain building
information for buildings that historically had fire incidents,
there was still significant data cleaning that needed to occur.
The bulk of the data cleaning process involved finding the
extent of the missing data and deciding how to deal with that
missingness. Our missingness procedures were designed to

2We provided AFRD with two lists of potential properties:
one longer list that was the most extensive that we could
provide, and another shorter list that was more manageable
to display on a map, which was refined using the most fre-
quently inspected property usage types.



minimize deletion of properties with missing data, because
a significant number of the properties in our model had NA
values for many variables. For each variable with missing
data, we used ”NA” as a category, rather than removing
properties with missing data. This required turning many
continuous variables into categorical variables. For contin-
uous variables with minimal missing data, we turned NA
values into the median or the mean of the data, whichever
was most appropriate, again to avoid getting rid of missing
data.

3.3.2 Feature Selection
After merging the datasets, we had a total of 252 variables
for each property. Our final model includes only 58 vari-
ables. We manually examined each variable to determine
whether it may be relevant to fire prediction, and excluded
many irrelevant variables in this initial process, such as the
phone number of the property owner, or property ID num-
bers. We then used forwards and backwards feature selec-
tion processes to determine each variable’s contribution to
the model, and removed the variables that did not contribute
to a higher predictive accuracy.

3.3.3 Model Selection
We built a series of models using several different super-
vised machine learning algorithms to find the most accurate
model. The algorithms we tried included Logistic Regres-
sion, Linear Discriminant Analysis, Neural Network, C50
(Classification and Regression Trees), Gradient Boosted Ma-
chine, rPART, and finally Support Vector Machine (SVM).
We decided to ultimately use SVM for the final risk score
because it produced the most predictive results.

3.4 Evaluating the Predictive Model
We evaluated the performance of our predictive model in
two ways:

First, we validated our model using a time-partitioned ap-
proach. Such a fire risk model would ideally be tested in
practice by predicting which buildings would have a fire in-
cident in the following year, and then waiting a year to see
which ones actually did catch on fire. Because we wanted to
effectively evaluate the accuracy of our model without wait-
ing a year to collect data on new fires, we simulated this
approach by using data from fire incidents in 2011 - 2014
as training data to predict fires in the last year of our data,
2014 - 2015. We used 10 bootstrapped random samples and
took the average of each of them to calculate our results.
This model performed very well, with an average accuracy
of 0.77 and average area under the curve (AUC) of 0.75. See
Figure 2a for a confusion matrix of the results. The most
important metric in this case is the true positives - that is,
how many buildings our model predicted would have a fire
that actually did have a fire. Of the buildings in our dataset
from 2014-2015 that did have a fire, our model was able
to predict 73.31% of them. Considering how few fires oc-
cur (only about 6% of the buildings in our dataset had fires
in 2011-2015), this is much better than guessing by chance
which buildings would catch on fire.

We also validated our model using 10-fold cross validation, a
more standard machine learning validation approach. This

model also did quite well, with an average accuracy of 0.78
and average AUC of 0.73. See Figure 2b for a confusion
matrix of the results. In this validation, we were able to
predict true positives 67.56% of the time.

It is worth discussing here the implications of the false pos-
itives in this model. In both validation approaches, we had
a substantial amount of false positives - that is, buildings
that our model predicted would have a fire, but that did
not actually have a fire. Though many predictive models
try to maximize the specificity (the ratio of true negatives
to all negatives) by increasing true negatives and reducing
false positives, in the context of determining which proper-
ties to inspect, false positives are actually quite valuable.
False positives represent buildings that share many charac-
teristics with those buildings that did catch on fire. Thus,
because they have these characteristics, these are buildings
that may be at high risk of catching on fire, and likely con-
tain properties that should be inspected by AFRD.

Additionally, because our training set and the data set that
we ultimately apply the model to are the same (that is, a
complete list of commercial properties in Atlanta), a per-
fect model with no false positives would do nothing more
than tell us which buildings had previously caught on fire.
While this is useful to know, it is data that AFRD already
has, and which they already can use to inform their prop-
erty inspections. False positives give us the added value of
predicting which buildings have not caught on fire (within
the five years of our fire incident dataset), but which are at
risk of fire due to their building characteristics.
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Figure 2: Confusion Matrices. (a) Results of Time Parti-
tioned Approach. True positive rate was 0.73.; (b) Results
of 10-fold Cross Validation. True positive rate was 0.68

3.5 Applying the Predictive Model
After we built the predictive model, we then applied the
fire risk scores to the list of current and potential prop-
erties to inspect so that AFRD could focus on inspecting
properties in buildings most at risk of fire. To do this, we
first computed the raw output of our predictive model for
the list of 8,224 commercial buildings we used to train and
test the model. This generated a score between 0 and 1 for
each building. To be more useful, we then translated those
scores to a 1-10 scale. Then, we categorized the scores into
low risk (1), medium risk (2-5), and high risk (6-10). We
then needed to apply these risk scores to the 2,573 current
and 6,096 potential properties to inspect. Unfortunately, be-



Figure 3: Interactive Map of Fires and Inspections. Allows inspectors to filter properties based on property usage, date, and
risk score.

cause the predictive model was built using a dataset of 8,224
commercial buildings, some of those buildings had multiple
properties inside them (a mall, for example), and many of
the commercial buildings in our dataset did not contain any
of the potential properties to inspect. We therefore had to
discover which of the 8,669 current and potential properties
were contained in the 8,224 commercial buildings with a risk
score, and assigned those properties the risk score associated
with the building they were contained within.

3.6 Visualizing Property Inspections
We ultimately provided the AFRD Assessment and Plan-
ning Unit with lists of potential properties to inspect, both
short (6,096) and long (19,397), along with their associated
building and parcel information in the form of a CSV file,
but we also wanted to provide an interactive map for the
fire inspectors and AFRD executive staff to use to augment
their policy and decision-making processes. The map in Fig-
ure 3 was made using the open source map-making tools
Mapbox and Leaflet to create the map base layer. Then, us-
ing the Javascript visualization library D3.js, we displayed
differently colored circles on the map to represent fire inci-
dents, currently inspected properties, and potential property
inspections using their X/Y coordinates. We also incorpo-
rated a user interface developed through discussions with

the AFRD Assessment and Planning Unit, and refined by
incorporating feedback from fire inspectors and AFRD exec-
utive staff. The map includes a panel for displaying property
information when hovering over a circle on the map, such as
its business name, address, occupancy usage type, date since
last inspection (or date of fire, if applicable), and fire risk
score, if available.

The user interface panel also included methods to filter the
fire incidents, and the current and potential property in-
spections according to their property usage type, the date
of fire or inspection, and their risk score. Finally, we incor-
porated a set of regional overlays requested by the AFRD
executive staff, including the AFRD battalions, the Atlanta
Neighborhood Planning Units (NPU), and Council Districts,
of which the latter two are political subdivisions of the city.
We also included dynamically generated counts and percent-
ages of fire incidents, and current and potential inspections
for each of those regional overlays, so the AFRD executive
staff could make decisions at a battalion, NPU, or Coun-
cil District level. We believe that this map could be used
as a powerful tool for supporting data-driven conversations
about AFRD personnel and resource allocation, inspection
staffing decisions, and may even inform decisions regarding
community education programs for fire safety and preven-



tion.

4. IMPACTS AND FUTURE WORK
Our goal in this work was to help AFRD improve the qual-
ity, completeness, and efficiency of their commercial prop-
erty inspections in Atlanta. Though there are many more
properties to inspect than they currently have the personnel
capacity to support, future inspections may be prioritized to
target the properties most at risk of fire, leading to a reduc-
tion in the frequency and severity of fire incidents in the city
of Atlanta. In addition, it is our hope that the results of this
work can help inform AFRD’s personnel and resource allo-
cation decisions, as well as support community education for
fire risk prevention targeted at a particular battalion, Neigh-
borhood Planning Unit, or Atlanta city council district.

In the future, we hope AFRD or other fire departments and
city organizations interested in applying a data analytic ap-
proach to their property inspections can use the methods
outlined here for identifying and prioritizing new property
inspections.

In addition, future research should seek to refine, expand,
and further validate our prediction model. Due to missing
or erroneous entries in the data sources, we were only able
to provide risk scores for 5,022 of the short list of 8,669 cur-
rent and potential inspections which we provided to AFRD.
A future version of this research might train the model on
a dataset that has fewer building information variables, but
may be applicable to more properties. Other research could
improve on the accuracy of the model, perhaps by incorpo-
rating other sources of data, such as violations of prior fire
inspections, data from the Department of Health and Well-
ness inspections, information from the Certificates of Occu-
pancy, or other, more behavioral sources, such as sanitation
or noise violations, rather than the building and structural
data that we used. In addition, more research needs to be
done on the usefulness and usability of the interactive map,
and how exactly AFRD inspectors and executive staff are
using it to inform their day to day planning, decisions, and
operations.

One step that cities can take towards this process is to gen-
erate a unique Building Identification Number (BIN), used
by relevant city departments, such as the Office of Build-
ings, Office of Housing or city planning departments, as well
as the Fire and Police Departments. This would allow for
an easier joining of various disparate sources of data, with-
out the need for extensive data cleaning, address validation,
text matching, and other complex, and potentially error-
generating processes.

Identification, selection, and prioritization of risky proper-
ties for inspection can be very difficult for cities that do
not have an integrated data platform, because buildings and
properties may have relevant information that is isolated
from other data sources, and which may not have a regu-
lar, timely process for updating information. Our work can
be a model for the complex process of new property inspec-
tion identification and prioritization. Our experience joining
isolated data sets from different government departments,
commercial data, and open data sources could be invaluable
for many cities that want to begin utilizing data science for

a smarter city, without requiring a significant financial in-
vestment. We hope the impact from our work may further
promote the beneficial use of open public sector data in the
city of Atlanta, and elsewhere.
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